Logo des Robert Koch-InstitutLogo des Robert Koch-Institut
Publikationsserver des Robert Koch-Institutsedoc
de|en
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
2024-12-23Zeitschriftenartikel
End-to-end simulation of nanopore sequencing signals with feed-forward transformers
Beslic, Denis
Kucklick, Martin
Engelmann, Susanne
Fuchs, Stephan
Renard, Berhard Y.
Körber, Nils
Motivation: Nanopore sequencing represents a significant advancement in genomics, enabling direct long-read DNA sequencing at the single-molecule level. Accurate simulation of nanopore sequencing signals from nucleotide sequences is crucial for method development and for complementing experimental data. Most existing approaches rely on predefined statistical models, which may not adequately capture the properties of experimental signal data. Furthermore, these simulators were developed for earlier versions of nanopore chemistry, which limits their applicability and adaptability to the latest flow cell data. Results: To enhance the quality of artificial signals, we introduce seq2squiggle, a novel transformer-based, non-autoregressive model designed to generate nanopore sequencing signals from nucleotide sequences. Unlike existing simulators that rely on static k-mer models, our approach learns sequential contextual information from segmented signal data. We benchmark seq2squiggle against state-of-the-art simulators on real experimental R9.4.1 and R10.4.1 data, evaluating signal similarity, basecalling accuracy, and variant detection rates. Seq2squiggle consistently outperforms existing tools across multiple datasets, demonstrating superior similarity to real data and offering a robust solution for simulating nanopore sequencing signals with the latest flow cell generation. Availability and implementation: seq2squiggle is freely available on GitHub at: github.com/ZKI-PH-ImageAnalysis/seq2squiggle.
Dateien zu dieser Publikation
Thumbnail
btae744.pdf — PDF — 3.514 Mb
MD5: 8b209b9b2ba95e63f09ab78da0426c90
Zitieren
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Zur Langanzeige
Nutzungsbedingungen Impressum Leitlinien Datenschutzerklärung Kontakt

Das Robert Koch-Institut ist ein Bundesinstitut im

Geschäftsbereich des Bundesministeriums für Gesundheit

© Robert Koch Institut

Alle Rechte vorbehalten, soweit nicht ausdrücklich anders vermerkt.