Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2024-05-04Zeitschriftenartikel
The predictive value of supervised machine learning models for insomnia symptoms through smartphone usage behavior
Simon, Laura
Terhorst, Yannik
Cohrdes, Caroline
Pryss, Rüdiger
Steinmetz, Lisa
Elhai, Jon D.
Baumeister, Harald
Introduction: Digital phenotyping can be an innovative and unobtrusive way to improve the detection of insomnia. This study explores the correlations between smartphone usage features (SUF) and insomnia symptoms and their predictive value for detecting insomnia symptoms. Methods: In an observational study of a German convenience sample, the Insomnia Severity Index (ISI) and smartphone usage data (e.g., time the screen was active, longest time the screen was inactive in the night) for the previous 7 days were obtained. SUF (e.g., min, mean) were calculated from the smartphone usage data. Correlation analyses between the ISI and SUF were conducted. For the specification of the machine learning models (ML), 80 % of the data was allocated to training, 20 % to testing, and five-fold cross-validation was used. Six algorithms (support vector machine, XGBoost, Random Forest, k-Nearest-Neighbor, Naive Bayes, and Logistic Regressions) were specified to predict ISI scores ≥15. Results: 752 participants (51.1 % female, mean ISI = 10.23, mean age = 41.92) were included in the analyses. Small correlations between some of the SUF and insomnia symptoms were found. In the ML models, sensitivity was low, ranging from 0.05 to 0.27 in the testing subsample. Random Forest and Naive Bayes were the best-performing algorithms. Yet, their AUCs (0.57, 0.58 respectively) in the testing subsample indicated a low discrimination capacity. Conclusions: Given the small magnitude of the correlations and low discrimination capacity of the ML models, SUFs, as measured in this study, do not appear to be sufficient for detecting insomnia symptoms. Further research is necessary to explore whether examining intra-individual variations and subpopulations or employing alternative smartphone sensors yields more promising outcomes.
Files in this item
Thumbnail
1-s2.0-S2590142724000120-main.pdf — Adobe PDF — 1.229 Mb
MD5: fc6643f19b059fcc85b8cda9b00891b4
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.