Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2014-07-28Zeitschriftenartikel DOI: 10.3389/fimmu.2014.00326
Ontogenic, phenotypic, and functional characterization of XCR1+ dendritic cells leads to a consistent classification of intestinal dendritic cells based on the expression of XCR1 and SIRPα
Becker, Martina
Güttler, Steffen
Bachem, Annabell
Hartung, Evelyn
Mora, Ahmed
Jäkel, Anika
Hutloff, Andreas
Henn, Volker
Mages, Hans Werner
Gurka, Stephanie
Kroczek, Richard
In the past, lack of lineage markers confounded the classification of dendritic cells (DC) in the intestine and impeded a full understanding of their location and function. We have recently shown that the chemokine receptor XCR1 is a lineage marker for cross-presenting DC in the spleen. Now, we provide evidence that intestinal XCR1+ DC largely, but not fully, overlap with CD103+ CD11b− DC, the hypothesized correlate of “cross-presenting DC” in the intestine, and are selectively dependent in their development on the transcription factor Batf3. XCR1+ DC are located in the villi of the lamina propria of the small intestine, the T cell zones of Peyer’s patches, and in the T cell zones and sinuses of the draining mesenteric lymph node. Functionally, we could demonstrate for the first time that XCR1+/CD103+ CD11b− DC excel in the cross-presentation of orally applied antigen. Together, our data show that XCR1 is a lineage marker for cross-presenting DC also in the intestinal immune system. Further, extensive phenotypic analyses reveal that expression of the integrin SIRPα consistently demarcates the XCR1− DC population. We propose a simplified and consistent classification system for intestinal DC based on the expression of XCR1 and SIRPα.
Files in this item
Thumbnail
2118Ekjmekbcw.pdf — Adobe PDF — 5.909 Mb
MD5: e3bdfd3984bd16a10a1dc057d8cd5d5d
Cite
BibTeX
EndNote
RIS
No license information
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.3389/fimmu.2014.00326
Permanent URL
https://doi.org/10.3389/fimmu.2014.00326
HTML
<a href="https://doi.org/10.3389/fimmu.2014.00326">https://doi.org/10.3389/fimmu.2014.00326</a>