Logo des Robert Koch-InstitutLogo des Robert Koch-Institut
Publikationsserver des Robert Koch-Institutsedoc
de|en
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
2013-06-05Zeitschriftenartikel DOI: 10.1021/ac303257d
Segmentation of Confocal Raman Microspectroscopic Imaging Data Using Edge-Preserving Denoising and Clustering
Alexandrov, Theodore
Lasch, Peter
Over the past decade, confocal Raman microspectroscopic (CRM) imaging has matured into a useful analytical tool to obtain spatially resolved chemical information on the molecular composition of biological samples and has found its way into histopathology, cytology, and microbiology. A CRM imaging data set is a hyperspectral image in which Raman intensities are represented as a function of three coordinates: a spectral coordinate λ encoding the wavelength and two spatial coordinates x and y. Understanding CRM imaging data is challenging because of its complexity, size, and moderate signal-to-noise ratio. Spatial segmentation of CRM imaging data is a way to reveal regions of interest and is traditionally performed using nonsupervised clustering which relies on spectral domain-only information with the main drawback being the high sensitivity to noise. We present a new pipeline for spatial segmentation of CRM imaging data which combines preprocessing in the spectral and spatial domains with k-means clustering. Its core is the preprocessing routine in the spatial domain, edge-preserving denoising (EPD), which exploits the spatial relationships between Raman intensities acquired at neighboring pixels. Additionally, we propose to use both spatial correlation to identify Raman spectral features colocalized with defined spatial regions and confidence maps to assess the quality of spatial segmentation. For CRM data acquired from midsagittal Syrian hamster (Mesocricetus auratus) brain cryosections, we show how our pipeline benefits from the complex spatial-spectral relationships inherent in the CRM imaging data. EPD significantly improves the quality of spatial segmentation that allows us to extract the underlying structural and compositional information contained in the Raman microspectra.
Dateien zu dieser Publikation
Thumbnail
20yZKB0CDOdVw.pdf — PDF — 1.578 Mb
MD5: e94fa0004e1be1f36386f6a9aba46a81
Zitieren
BibTeX
EndNote
RIS
Keine Lizenzangabe
Zur Langanzeige
Nutzungsbedingungen Impressum Leitlinien Datenschutzerklärung Kontakt

Das Robert Koch-Institut ist ein Bundesinstitut im

Geschäftsbereich des Bundesministeriums für Gesundheit

© Robert Koch Institut

Alle Rechte vorbehalten, soweit nicht ausdrücklich anders vermerkt.

 
DOI
10.1021/ac303257d
Permanent URL
https://doi.org/10.1021/ac303257d
HTML
<a href="https://doi.org/10.1021/ac303257d">https://doi.org/10.1021/ac303257d</a>