Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2016-06-27Zeitschriftenartikel DOI: 10.1038/srep28172
Costs of life - Dynamics of the protein inventory of Staphylococcus aureus during anaerobiosis
Zühlke, Daniela
Dörries, Kirsten
Bernhardt, Jörg
Maaß, Sandra
Muntel, Jan
Liebscher, Volkmar
Pané-Farré, Jan
Riedel, Katharina
Lalk, Michael
Völker, Uwe
Engelmann, Susanne
Becher, Dörte
Fuchs, Stephan
Hecker, Michael
Absolute protein quantification was applied to follow the dynamics of the cytoplasmic proteome of Staphylococcus aureus in response to long-term oxygen starvation. For 1,168 proteins, the majority of all expressed proteins, molecule numbers per cell have been determined to monitor the cellular investments in single branches of bacterial life for the first time. In the presence of glucose the anaerobic protein pattern is characterized by increased amounts of glycolytic and fermentative enzymes such as Eno, GapA1, Ldh1, and PflB. Interestingly, the ferritin-like protein FtnA belongs to the most abundant proteins during anaerobic growth. Depletion of glucose finally leads to an accumulation of different enzymes such as ArcB1, ArcB2, and ArcC2 involved in arginine deiminase pathway. Concentrations of 29 exo- and 78 endometabolites were comparatively assessed and have been integrated to the metabolic networks. Here we provide an almost complete picture on the response to oxygen starvation, from signal transduction pathways to gene expression pattern, from metabolic reorganization after oxygen depletion to beginning cell death and lysis after glucose exhaustion. This experimental approach can be considered as a proof of principle how to combine cell physiology with quantitative proteomics for a new dimension in understanding simple life processes as an entity.
Files in this item
Thumbnail
202NzAOw2hFXo.pdf — Adobe PDF — 3.124 Mb
MD5: 540bba7c0b40ba82b37b8e95fba64952
Cite
BibTeX
EndNote
RIS
No license information
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.1038/srep28172
Permanent URL
https://doi.org/10.1038/srep28172
HTML
<a href="https://doi.org/10.1038/srep28172">https://doi.org/10.1038/srep28172</a>