Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2014-03-18Zeitschriftenartikel DOI: 10.1021/pr401249b
Pre- and Post-Processing Workflow for Affinity Purification Mass Spectrometry Data
Fischer, Martina
Zilkenat, Susann
Gerlach, Roman
Wagner, Samuel
Renard, Bernhard Y.
The reliable detection of protein–protein interactions by affinity purification mass spectrometry (AP-MS) is crucial for the understanding of biological processes. Quantitative information can be used to separate truly interacting proteins from false-positives by contrasting counts of proteins binding to specific baits with counts of negative controls. Several approaches have been proposed for computing scores for potential interaction proteins, for example, the commonly used SAINT software. However, it remains a subjective decision where to set the cutoff score for candidate selection; furthermore, no precise control for the expected number of false-positives is provided. In related fields, successful data analysis strongly relies on statistical pre- and post-processing steps, which, so far, have played only a minor role in AP-MS data analysis. We introduce a complete workflow, embedding either the scoring method SAINT or alternatively a two-stage Poisson model into a pre- and post-processing framework. To this end, we investigate different normalization methods and apply a statistical filter adjusted to AP-MS data. Furthermore, we propose permutation and adjustment procedures, which allow the replacement of scores by statistical p values. The performance of the workflow is assessed on simulations as well as on a study focusing on interactions with the T3SS in Salmonella Typhimurium. Preprocessing methods significantly increase the number of detected truly interacting proteins, while a constant false-discovery rate is maintained. The software solution is freely available.
Files in this item
Thumbnail
27iCgRuCak61Q.pdf — Adobe PDF — 719.2 Kb
MD5: 10c74ccac84f92c19d514b1bf570ba3a
Cite
BibTeX
EndNote
RIS
No license information
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.1021/pr401249b
Permanent URL
https://doi.org/10.1021/pr401249b
HTML
<a href="https://doi.org/10.1021/pr401249b">https://doi.org/10.1021/pr401249b</a>