Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2017-01-03Zeitschriftenartikel DOI: 10.7717/peerj.2833
Metabolic phenotype of clinical and environmental Mycobacterium avium subsp. hominissuis isolates
Sanchini, Andrea
Dematheis, Flavia
Semmler, Torsten
Lewin, Astrid
Background: Mycobacterium avium subsp. hominissuis (MAH) is an emerging opportunistic human pathogen. It can cause pulmonary infections, lymphadenitis and disseminated infections in immuno-compromised patients. In addition, MAH is widespread in the environment, since it has been isolated from water, soil or dust. In recent years, knowledge on MAH at the molecular level has increased substantially. In contrast, knowledge of the MAH metabolic phenotypes remains limited. Methods: In this study, for the first time we analyzed the metabolic substrate utilization of ten MAH isolates, five from a clinical source and five from an environmental source. We used BIOLOG Phenotype MicroarrayTM technology for the analysis. This technology permits the rapid and global analysis of metabolic phenotypes. Results: The ten MAH isolates tested showed different metabolic patterns pointing to high intra-species diversity. Our MAH isolates preferred to use fatty acids such as Tween, caproic, butyric and propionic acid as a carbon source, and L-cysteine as a nitrogen source. Environmental MAH isolates resulted in being more metabolically active than clinical isolates, since the former metabolized more strongly butyric acid (p = 0.0209) and propionic acid (p = 0.00307). Discussion: Our study provides new insight into the metabolism of MAH. Understanding how bacteria utilize substrates during infection might help the developing of strategies to fight such infections.
Files in this item
Thumbnail
274YjwTkZ3aC.pdf — Adobe PDF — 792.3 Kb
MD5: ae1d22767a3ec7be261ad6fff70ae5e0
Cite
BibTeX
EndNote
RIS
No license information
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.7717/peerj.2833
Permanent URL
https://doi.org/10.7717/peerj.2833
HTML
<a href="https://doi.org/10.7717/peerj.2833">https://doi.org/10.7717/peerj.2833</a>