Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2008-12-03Zeitschriftenartikel DOI: 10.1186/1471-2180-8-210
Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene
Kiderlen, Albrecht
Radam, Elke
Lewin, Astrid
Background: The free-living amoeba Balamuthia mandrillaris may cause fatal encephalitis both in immunocompromised and in – apparently – immunocompetent humans and other mammalian species. Rapid, specific, sensitive, and reliable detection requiring little pathogen-specific expertise is an absolute prerequisite for a successful therapy and a welcome tool for both experimental and epidemiological research. Results: A real-time polymerase chain reaction assay using TaqMan® probes (real-time PCR) was established specifically targeting the RNase P gene of B. mandrillaris amoebae. The assay detected at least 2 (down to 0.5) genomes of B. mandrillaris grown in axenic culture. It did not react with DNA from closely related Acanthamoeba (3 species), nor with DNA from Toxoplasma gondii, Leishmania major, Pneumocystis murina, Mycobacterium bovis (BCG), human brain, various mouse organs, or from human and murine cell lines. The assay efficiently detected B. mandrillaris DNA in spiked cell cultures, spiked murine organ homogenates, B. mandrillaris-infected mice, and CNS tissue-DNA preparations from 2 patients with proven cerebral balamuthiasis. This novel primer set was successfully combined with a published set that targets the B. mandrillaris 18S rRNA gene in a duplex real-time PCR assay to ensure maximum specificity and as a precaution against false negative results. Conclusion: A real-time PCR assay for B. mandrillaris amoebae is presented, that is highly specific, sensitive, and reliable and thus suited both for diagnosis and for research.
Files in this item
Thumbnail
21AfOY402W9XU.pdf — Adobe PDF — 251.0 Kb
MD5: 45902a4ede937fee63b3e87bc83d10ca
Cite
BibTeX
EndNote
RIS
Creative Commons Namensnennung 3.0Creative Commons Namensnennung 3.0
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 2007-05-25Zeitschriftenartikel
    FepA- and TonB-dependent bacteriophage H8: receptor binding and genomic sequence. 
    Rabsch, Wolfgang; Ma, Li; Wiley, Graham; Najar, Fares Z.; Kaserer, Wallace; Schuerch, Daniel W.; Klebba, Joseph E.; Roe, Bruce A.; Gomez, Jenny A. Laverde; Schallmey, Marcus; Newton, Salete M. C.; Klebba, Phillip E.
    H8 is derived from a collection of Salmonella enterica serotype Enteritidis bacteriophage. Its morphology and genomic structure closely resemble those of bacteriophage T5 in the family Siphoviridae. H8 infected S. enterica ...
  • 2005-06-20Zeitschriftenartikel
    Viral promoters can initiate expression of toxin genes introduced into Escherichia coli 
    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd
    Background: The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. ...
  • 2013-08-08Zeitschriftenartikel
    Cytomegalovirus Downregulates IRE1 to Repress the Unfolded Protein Response 
    Stahl, Sebastian; Burkhart, Julia M.; Hinte, Florian; Tirosh, Boaz; Mohr, Hermine; Zahedi, René P.; Sickmann, Albert; Ruzsics, Zsolt; Budt, Matthias; Brune, Wolfram
    During viral infection, a massive demand for viral glycoproteins can overwhelm the capacity of the protein folding and quality control machinery, leading to an accumulation of unfolded proteins in the endoplasmic reticulum ...
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.1186/1471-2180-8-210
Permanent URL
https://doi.org/10.1186/1471-2180-8-210
HTML
<a href="https://doi.org/10.1186/1471-2180-8-210">https://doi.org/10.1186/1471-2180-8-210</a>