Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2010-07-09Zeitschriftenartikel DOI: 10.1371/journal.pone.0010986
The Genome of a Bacillus Isolate Causing Anthrax in Chimpanzees Combines Chromosomal Properties of B. cereus with B. anthracis Virulence Plasmids
Klee, Silke
Brzuszkiewicz, Elzbieta B.
Nattermann, Herbert
Brüggemann, Holger
Dupke, Susann
Wollherr, Antje
Franz, Tatjana
Pauli, Georg
Appel, Bernd
Liebl, Wolfgang
Couacy-Hymann, Emmanuel
Boesch, Christophe
Meyer, Frauke-Dorothee
Leendertz, Fabian
Ellerbrok, Heinz
Gottschalk, Gerhard
Grunow, Roland
Liesegang, Heiko
Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as ‘‘B. cereus variety (var.) anthracis’’.
Files in this item
Thumbnail
22VkT5DpM3oc.pdf — Adobe PDF — 1.192 Mb
MD5: f148e961bf2e4acbe1ae5d86adbeb05a
Cite
BibTeX
EndNote
RIS
No license information
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 2007-05-25Zeitschriftenartikel
    FepA- and TonB-dependent bacteriophage H8: receptor binding and genomic sequence. 
    Rabsch, Wolfgang; Ma, Li; Wiley, Graham; Najar, Fares Z.; Kaserer, Wallace; Schuerch, Daniel W.; Klebba, Joseph E.; Roe, Bruce A.; Gomez, Jenny A. Laverde; Schallmey, Marcus; Newton, Salete M. C.; Klebba, Phillip E.
    H8 is derived from a collection of Salmonella enterica serotype Enteritidis bacteriophage. Its morphology and genomic structure closely resemble those of bacteriophage T5 in the family Siphoviridae. H8 infected S. enterica ...
  • 2005-06-20Zeitschriftenartikel
    Viral promoters can initiate expression of toxin genes introduced into Escherichia coli 
    Lewin, Astrid; Mayer, Martin; Chusainow, Janet; Jacob, Daniela; Appel, Bernd
    Background: The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. ...
  • 2013-08-08Zeitschriftenartikel
    Cytomegalovirus Downregulates IRE1 to Repress the Unfolded Protein Response 
    Stahl, Sebastian; Burkhart, Julia M.; Hinte, Florian; Tirosh, Boaz; Mohr, Hermine; Zahedi, René P.; Sickmann, Albert; Ruzsics, Zsolt; Budt, Matthias; Brune, Wolfram
    During viral infection, a massive demand for viral glycoproteins can overwhelm the capacity of the protein folding and quality control machinery, leading to an accumulation of unfolded proteins in the endoplasmic reticulum ...
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.1371/journal.pone.0010986
Permanent URL
https://doi.org/10.1371/journal.pone.0010986
HTML
<a href="https://doi.org/10.1371/journal.pone.0010986">https://doi.org/10.1371/journal.pone.0010986</a>