Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2010-04-01Zeitschriftenartikel DOI: 10.1111/j.1365-2672.2010.04737.x
Detection limit of negative staining electron microscopy for the diagnosis of bioterrorism-related micro-organisms
Laue, Michael
Bannert, Norbert
Aims: To determine the detection limit of diagnostic negative staining electron microscopy for the diagnosis of pathogens that could be used for bioterrorism. Methods and Results: Suspensions of vaccinia poxvirus and endospores of Bacillus subtilis were used at defined concentrations as a model for poxviruses and spores of anthrax (Bacillus anthracis), both of which are pathogens that could be used for bioterrorist attacks. Negative staining electron microscopy was performed directly or after sedimentation of these suspensions on to the sample supports using airfuge ultracentrifugation. For both virus and spores, the detection limit using direct adsorption of a 10-μ sample volume onto the sample support was 106 particles per ml. Using airfuge ultracentrifugation with a sample volume of 80 ll, the detection limit could be reduced to 105 particles per ml for spores and to 5 x 104 particles per ml for poxviruses. The influence on particle detection of incubation time, washing and adsorption procedures was investigated. Conclusions: The reproducibility and sensitivity of the method were acceptable, particularly considering the small sample volume and low particle number applied onto the sample support. Significance and Impact of the Study: Diagnostic negative staining electron microscopy is used for the diagnosis of pathogens in emergency situations because it allows a rapid examination of all particulate matter down to the nanometre scale. This study provides precise detection limit for the method, an important factor for the validation and improvement of the technique.
Files in this item
Thumbnail
250aU3Io1RrZk.pdf — Adobe PDF — 233.7 Kb
MD5: c385c5ca62f05f75ee86ca29f0182ee1
Cite
BibTeX
EndNote
RIS
No license information
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.1111/j.1365-2672.2010.04737.x
Permanent URL
https://doi.org/10.1111/j.1365-2672.2010.04737.x
HTML
<a href="https://doi.org/10.1111/j.1365-2672.2010.04737.x">https://doi.org/10.1111/j.1365-2672.2010.04737.x</a>