Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2010-08-11Zeitschriftenartikel DOI: 10.1099/vir.0.024638-0
Mumps virus small hydrophobic protein targets ataxin-1 ubiquitin-like interacting protein (ubiquilin 4)
Woznik, Maria
Rödner, Claudia
Lemon, Ken
Rima, Bert
Mankertz, Annette
Finsterbusch, Tim
The small hydrophobic (SH) protein of mumps virus has been reported to interfere with innate immunity by inhibiting tumour necrosis factor alpha-mediated apoptosis. In a yeast two-hybrid screen we have identified the ataxin-1 ubiquitin-like interacting protein (A1Up) as a cellular target of the SH protein. A1Up contains an amino-terminal ubiquitin-like (UbL) domain, a carboxyterminal ubiquitin-associated (UbA) domain and two stress-inducible heat shock chaperoninbinding (Sti1) motifs. This places it within the ubiquitin-like protein family that is involved in proteasome-mediated activities. Co-immunoprecipitation confirmed the binding of SH and A1Up and demonstrates that a truncated protein fragment corresponding to aa 136–270 of A1Up, which represents the first Sti1-like repeat and an adjacent hydrophobic region, was sufficient for interaction, whereas neither the UbL nor the UbA domains were required for interaction. The ectopic expression of A1Up leads to a redistribution of SH to punctate structures that co-localize with the 20S proteasome in transfected or infected mammalian cells.
Files in this item
Thumbnail
27871aSEBvQig.pdf — Adobe PDF — 532.6 Kb
MD5: 766274eb5d15aa68636926691ac85bb1
Cite
BibTeX
EndNote
RIS
No license information
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 2012-12-21Zeitschriftenartikel
    Protein-Protein Interaction Domains of Bacillus subtilis DivIVA 
    Baarle, Suey van; Celik, Ilkay Nazli; Kaval, Karan Gautam; Bramkamp, Marc; Hamoen, Leendert W.; Halbedel, Sven
    DivIVA proteins are curvature-sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding domain fused to a less conserved ...
  • 2013-03-11Zeitschriftenartikel
    Towards further reduction and replacement of animal bioassays in prion research by cell and protein misfolding cyclic amplification assays 
    Boerner, Susann; Wagenführ, Katja; Daus, Martin L.; Thomzig, Achim; Beekes, Michael
    Laboratory animals have long since been used extensively in bioassays for prions in order to quantify, usually in terms of median infective doses [ID50], how infectious these pathogens are in vivo. The identification of ...
  • 2013-08-08Zeitschriftenartikel
    Cytomegalovirus Downregulates IRE1 to Repress the Unfolded Protein Response 
    Stahl, Sebastian; Burkhart, Julia M.; Hinte, Florian; Tirosh, Boaz; Mohr, Hermine; Zahedi, René P.; Sickmann, Albert; Ruzsics, Zsolt; Budt, Matthias; Brune, Wolfram
    During viral infection, a massive demand for viral glycoproteins can overwhelm the capacity of the protein folding and quality control machinery, leading to an accumulation of unfolded proteins in the endoplasmic reticulum ...
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.1099/vir.0.024638-0
Permanent URL
https://doi.org/10.1099/vir.0.024638-0
HTML
<a href="https://doi.org/10.1099/vir.0.024638-0">https://doi.org/10.1099/vir.0.024638-0</a>