Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2019-06-25Zeitschriftenartikel DOI: 10.25646/6614
Generalization of the small-world effect on a model approaching the Erdős–Rényi random graph
Maier, Benjamin F.
The famous Watts–Strogatz (WS) small-world network model does not approach the Erdős–Rényi (ER) random graph model in the limit of total randomization which can lead to confusion and complicates certain analyses. In this paper we discuss a simple alternative which was first introduced by Song and Wang, where instead of rewiring, edges are drawn between pairs of nodes with a distance-based connection probability. We show that this model is simpler to analyze, approaches the true ER random graph model in the completely randomized limit, and demonstrate that the WS model and the alternative model may yield different quantitative results using the example of a random walk temporal observable. An efficient sampling algorithm for the alternative model is proposed. Analytic results regarding the degree distribution, degree variance, number of two-stars per node, number of triangles per node, clustering coefficient, and random walk mixing time are presented. Subsequently, the small-world effect is illustrated by showing that the clustering coefficient decreases much slower than an upper bound on the message delivery time with increasing long-range connection probability which generalizes the small-world effect from informed searches to random search strategies. Due to its accessibility for analytic evaluations, we propose that this modified model should be used as an alternative reference model for studying the influence of small-world topologies on dynamic systems as well as a simple model to introduce numerous topics when teaching network science.
Files in this item
Thumbnail
Generalization of the small-world effect on a model approaching the Erdős–Rényi random graph.pdf — Adobe PDF — 1.492 Mb
MD5: b70730f6820b5eb6eca193c7aa44b194
erratum_generalization of the small-world effect.pdf — Adobe PDF — 659.6 Kb
erratum zum Article / publisher correction of the article
MD5: 04fc150a1a9e6ab1034e4170e7153ef9
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.25646/6614
Permanent URL
http://dx.doi.org/10.25646/6614
HTML
<a href="http://dx.doi.org/10.25646/6614">http://dx.doi.org/10.25646/6614</a>